header-bear

Proudly serving Wesley Chapel, New Tampa and surrounding areas.

Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation

Last updated: 02-25-2021

Read original article here

Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation

Epidemiological and experimental studies have revealed the effects of the room temperature, indoor air humidity, and ventilation on human health, work and cognitive performance, and risk of infection. In this overview, we integrate the influence of these important microclimatic parameters and assess their influence in offices based on literature searches.

The dose-effect curves of the temperature describe a concave shape. Low temperature increases the risk of cardiovascular and respiratory diseases and elevated temperature increases the risk of acute non-specific symptoms, e.g., dry eyes, and respiratory symptoms. Cognitive and work performance is optimal between 22 °C and 24 °C for regions with temperate or cold climate, but both higher and lower temperatures may deteriorate the performances and learning efficiency. Low temperature may favor virus viability, however, depending on the status of the physiological tissue in the airways.

Low indoor air humidity causes vulnerable eyes and airways from desiccation and less efficient mucociliary clearance. This causes elevation of the most common mucous membrane-related symptoms, like dry and tired eyes, which deteriorates the work performance. Epidemiological, experimental, and clinical studies support that intervention of dry indoor air conditions by humidification alleviates symptoms of dry eyes and airways, fatigue symptoms, less complaints about perceived dry air, and less compromised work performance. Intervention of dry air conditions by elevation of the indoor air humidity may be a non-pharmaceutical treatment of the risk of infection by reduced viability and transport of influenza virus. Relative humidity between 40 and 60% appears optimal for health, work performance, and lower risk of infection.

Ventilation can reduce both acute and chronic health outcomes and improve work performance, because the exposure is reduced by the dilution of the indoor air pollutants (including pathogens, e.g., as virus droplets), and in addition to general emission source control strategies. Personal control of ventilation appears an important factor that influences the satisfaction of the thermal comfort due to its physical and positive psychological impact. However, natural ventilation or mechanical ventilation can become sources of air pollutants, allergens, and pathogens of outdoor or indoor origin and cause an increase in exposure. The “health-based ventilation rate” in a building should meet WHO's air quality guidelines and dilute human bio-effluent emissions to reach an acceptable perceived indoor air quality. Ventilation is a modifying factor that should be integrated with both the indoor air humidity and the room temperature in a strategic joint control to satisfy the perceived indoor air quality, health, working performance, and minimize the risk of infection.


Read the rest of this article here